Future colliders: where, how, why

Gabriella Gaudio INFN - Pavia

Future colliders: where, how, why

understanding

Gabriella Gaudio INFN - Pavia

LHC schedule

Stubbornly Standard Model

G. Gaudio – RBI seminar – 2019, November 28th

Stubbornly Standard Model

Status: May 2019 Model АDD _{Бкк} + g/q	f v lete						
ADD G _{KK} + g/q	f v lote				$\int \mathcal{L} dt = (3)$	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ Te}$
ADD $G_{KK} + g/q$	1,7 0013	t E ^{mis}	^s ∫£dt[fl	⁻¹] Limit			Reference
ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RSI $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqc$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqc$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⊧j Yes – j – j – 1.J/2jYes ≥3jYes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Ма Ма Ма Ма Ма Састана Састана Састана Састана Каза Ала (1,6 Tel Каза Ала (1,6 Tel Каза (1,6 Tel Каза (1,6 Tel Каза (1,6 Tel Каза (1,6 Te	7.7 TeV 8.6 TeV 8.9 TeV 9.55 TeV 4.1 TeV 2.3 TeV V 3.8 TeV TeV	$\begin{array}{l} n=2\\ n=3\; HLZ\; LILO\\ n=6\\ n=6,\; M_D=3\; TeV, rot BH\\ n=6,\; M_D=3\; TeV, rot BH\\ k/\overline{M}_{PI}=0.1\\ k/\overline{M}_{PI}=1.0\\ k/\overline{M}_{PI}=1.0\\ k/\overline{M}_{PI}=1.5\%\\ Ter(1,1),\; \mathcal{B}(A^{(1,1)})\to tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-00 1804.10823 1803.09678
$\begin{array}{c} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to t\tau \\ \mathrm{SSM} \ W' \to \tau \\ \mathrm{HVT} \ V' \to WZ \to qaqq \ \mathrm{model} \\ \mathrm{HVT} \ V' \to WH/\ ZH \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_R \to \mu \ M_R \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1J/2j Yes Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 139 36.1 36.1 80	Z masa Z Z masa Z Z masa Z Z masa Z W masa Z V masa Z Var Z Var Z Var Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V Z V <td>5.1 TeV 2.42 TeV 3.1 TeV 3.0 TeV 3.6 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.0 TeV</td> <td>$\label{eq:gv} \begin{split} &\Gamma/m = 1\% \\ &g_V = 3 \\ &g_V = 3 \\ &m(N_R) = 0.5 \text{ TeV}, g_L = g_R \end{split}$</td> <td>1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679</td>	5.1 TeV 2.42 TeV 3.1 TeV 3.0 TeV 3.6 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.0 TeV	$\label{eq:gv} \begin{split} &\Gamma/m = 1\% \\ &g_V = 3 \\ &g_V = 3 \\ &m(N_R) = 0.5 \text{ TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
Cl qqqq Cl llqq Cl tttt	- 2j 2e,μ - ≥1e,μ ≥1b,∋	– – ≥1jYes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^{-} 40.0 TeV η_{LL}^{-} $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
Axial-vector mediator (Dirac DI Colored scalar mediator (Dirac $V_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac D	$\begin{array}{ccccc} \text{M}) & 0 & e, \mu & 1-4 \\ \text{:DM}) & 0 & e, \mu & 1-4 \\ & 0 & e, \mu & 1 & \text{J}, \leq \\ \text{M}) & 0 & 1 & e, \mu & 1 & \text{b}, 0 \\ \end{array}$	lj Yes lj Yes 1j Yes 1J Yes	36.1 36.1 3.2 36.1	mmmet 1.55 TeV mmmed 1.67 Te M, 700 GeV mmet 1.67 Te	V ∋V 3.4 TeV	$\begin{array}{l} g_q {=} 0.25, \ g_{\chi} {=} 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g_{=} {1.0, \ m(\chi)} = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
Scalar LQ 1st gen Scalar LQ 2nd gen Scalar LQ 3rd gen Scalar LQ 3rd gen	$\begin{array}{ccc} 1,2 \ e & \geq 2 \\ 1,2 \ \mu & \geq 2 \\ 2 \ \tau & 2 \ b \\ 0 & -1 \ e, \mu & 2 \ b \end{array}$	j Yes j Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.55 TeV LQ* mass 1.03 TeV LQ* mass 970 GeV	V	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
$ \begin{array}{c} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ BJ \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + J \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ Q \ O \ WgWq \end{array} $	multi-channel multi-channel $\langle 2(SS)/\geq 3 e, \mu \geq 1 b, z$ $1 e, \mu \geq 1 b, z$ $0 e, \mu, 2 \gamma \geq 1 b, z$ $1 e, \mu \geq 4$	≥1 j Yes ≥1 jYes ≥1 jYes jYes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T mass 1.54 TeV Y mass 1.54 TeV B mass 1.21 TeV Q mass 690 GeV	aV TeV	$\begin{array}{l} & \mathrm{SU}(2) \mbox{ doublet} \\ & \mathrm{SU}(2) \mbox{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	- 2 j 1 γ 1 j - 1 b, 1 3 e, μ - 3 e, μ, τ -	- - - - -	139 36.7 36.1 20.3 20.3	q' mass q' mass b' mass t' mass r' mass 1.6 Te	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV V	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	$\begin{array}{cccc} 1 & e, \mu & \geq 2 \\ 2 & \mu & 2 \\ j \\ 2,3,4 & e, \mu (SS) & - \\ 3 & e, \mu, \tau & - \\ -$	j Yes - - - - - - - -	79.8 36.1 36.1 20.3 36.1 34.4	Nº mass 560 GeV Ne mass 870 GeV He* mass 870 GeV He* mass 870 GeV mail:charged particle mass 1.22 TeV monopoe mass 2	3.2 TeV 2.37 TeV	$\begin{split} m(W_{\mathcal{R}}) &= 4.1 \text{ TeV}, g_L = g_{\mathcal{R}} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, q = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

No new physics scenario

.....But when theorists are more confused, it's the time for more, not less experiments.

(Nima Arkani-Hamed Cern Courier March 2019)

Present and Future Large Accelerator projects

In operation In construction

A. Faus-Golfe

Internation EPPSU Fcc/cLic,	nal Lar	ge Scale	Projects	An u	uncomple	ted view						Lever certeire		
2018 2020	2022 2	024 2026	2028 2030	2032 2034	4 2036 203	38 2040	2042	2044 2	2046 20	048 20	50 20	52 2054	2056	
LHC ATF2	ESS SC linac	HL-LHC 11T Nb ₃ Tn	CepC. High cu	ILC urrent 1.3GHz	z SC Hi,	CCee gh current	FCC 16T	hh Nb₃Tn/N	lbTn			FCCh 16T N	h (FCCee b₃Tn/NbTr	
Super KEKB XFEL			Z-pole	nano- beam/s	z- stabilization	pole	FCC ERL	eh I	НЕ-LНС 16Т NЬ₃Т	(HL-LI n/NbTn	HC)	μ+μ-		
 CepC 2019		LDIN	PLC	12 GHz nano- beam/st	tabilization				SppC		18-2	0 Novemb	er 2019	51

G. Gaudio – RBI seminar – 2019, November 28th

Istituto Nazionale di Fisica Nucleare

proton → ← proton

Hadron vs lepton accelerator machine

collision of two composite particles (with different initial constituents and energies)

$$\sqrt{s} = \sqrt{x_1 \ x_2 \ s}$$

electroweak interactions + strong interactions

collision of two point-like particles (with exactly defined initial state, quantum numbers and energies)

electroweak interactions

Hadron vs lepton accelerator machine

proton $\longrightarrow \leftarrow$ — proton

G. Gaudio – RBI seminar – 2019, November 28th

Lepton collider motivation

Lepton colliders offer the potential of precision measurements

- Well defined initial conditions
- Low background levels
- . . .

At high energies they are efficient discovery machines • Full collision energy available for particle production

- But sufficient luminosity is required

14 TeV lepton collisions are comparable to 100 TeV proton collisions

Accelerating electrons (positrons)

e⁺*e*⁻ *competing projects*

12

Luminosity per facility

Running phase (FCC as example)

Phase	Run duration (years)	Centre-of-mass energies (GeV)	Integrated lumi- nosity (ab ⁻¹)	Event statistics
FCC-ee-Z	4	88–95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158–162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt(1)	1	340-350	0.2	tt threshold scan
FCC-ee-tt(2)	4	365	1.5	10^6 tt events

Precision is the way ...

The importance of precision measurements

A.Vicini

M₂ [GeV]

Precision on the Higgs boson coupling

Collider	HL-LHC	ILC_{250}	$\operatorname{CLIC}_{380}$	$CEPC_{240}$	FCC-ee _{240\rightarrow365}
Lumi (ab^{-1})	3	2	1	5.6	5 + 0.2 + 1.5
Years		$11.5^{\ 5}$	8	7	3+1+4
$g_{\rm HZZ}$ (%)	$1.5 \ / \ 3.6$	$0.29\ /\ 0.47$	$0.44 \ / \ 0.66$	$0.18 \;/\; 0.52$	0.17 / 0.26
$g_{\rm HWW}$ (%)	$1.7 \ / \ 3.2$	$1.1 \ / \ 0.48$	$0.75 \ / \ 0.65$	$0.95 \ / \ 0.51$	$0.41 \ / \ 0.27$
$g_{ m Hbb}~(\%)$	$3.7 \ / \ 5.1$	$1.2 \;/\; 0.83$	$1.2 \ / \ 1.0$	$0.92 \ / \ 0.67$	$0.64 \ / \ 0.56$
$g_{\rm Hcc}$ (%)	SM / SM	$2.0 \ / \ 1.8$	$4.1 \ / \ 4.0$	$2.0 \ / \ 1.9$	1.3 / 1.3
g_{Hgg} (%)	$2.5 \ / \ 2.2$	$1.4 \ / \ 1.1$	$1.5 \ / \ 1.3$	$1.1 \ / \ 0.79$	0.89 / 0.82
$g_{\mathrm{H}\tau\tau}$ (%)	$1.9 \ / \ 3.5$	$1.1 \; / \; 0.85$	$1.4\ /\ 1.3$	$1.0 \ / \ 0.70$	0.66 / 0.57
$g_{\mathrm{H}\mu\mu}$ (%)	$4.3 \ / \ 5.5$	$4.2 \ / \ 4.1$	$4.4 \ / \ 4.3$	$3.9 \ / \ 3.8$	3.9 / 3.8
$g_{\mathrm{H}\gamma\gamma}$ (%)	$1.8 \; / \; 3.7$	$1.3\ /\ 1.3$	$1.5 \ / \ 1.4$	$1.2\;/\;1.2$	$1.2 \ / \ 1.2$
$g_{\mathrm{HZ}\gamma}$ (%)	11. / 11.	11. / 10.	11. / 9.8	$6.3 \ / \ 6.3$	10. / 9.4
$g_{ m Htt}$ (%)	$3.4 \ / \ 2.9$	$2.7 \ / \ 2.6$	$2.7 \; / \; 2.7$	$2.6 \ / \ 2.6$	2.6 / 2.6
$g_{\rm HHH}$ (%)	50. / 52.	28. / 49.	45. / 50.	17. / 49.	19. / 34.
$\Gamma_{\rm H}$ (%)	\mathbf{SM}	2.4	2.6	1.9	1.2
BR_{inv} (%)	1.9	0.26	0.63	0.27	0.19
BR_{EXO} (%)	SM (0.0)	1.8	2.7	1.1	1.0

G. Gaudio – RBI seminar – 2019, November 28th

e⁺*e*⁻ *competing projects*

18

FCC ee and hh

FCC tunnel proposal

FCC-ee design

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection DAFNE: crab waist, double ring SuperB-factories, S-KEKB: low β_y* LEP: high energy, SR effects VEPP-4M, LEP: precision energy calibration w. res. depolarisation KEKB: e⁺ source HERA, LEP, RHIC: spin gymnastics combining successful ingredients of several recent colliders → highest luminosities & energies

FCC integrated project schedule

CEPC Accelerator Chain

CEPC site selection

CEPC timeline

G. Gaudio – RBI seminar – 2019, November 28th

ILC beam accelerator

G. Gaudio – RBI seminar – 2019, November 28th

Istituto Nazionale di Fisica Nucleare

CLIC tunnels

G. Gaudio – RBI seminar – 2019, November 28th

Accelerating electrons (positrons)

Muon colliders – proton driver

Short, intense proton bunches to produce hadronic showers

Muon are captured, bunched and then cooled

Acceleration to collision energy

Pions decay into muons that can be captured

G. Gaudio – RBI seminar – 2019, November 28th

Collision

Beam induced background – neutrino radiation hazard

LEMMA schema

In the LEMMA schema 45 GeV positrons annihilate with the electrons of a beryllium target: a beam of muons and antimuons with collimated energy and emission angle can be obtained.

LEMMA schema

Small efficiency of converting positrons to muon pairs

- Muon pair production is only small fraction of overall cross section (O(10-5))
- Most positrons lost with no muon produced
- Have to produce many positrons (difficult)
- O(100MW) synchrotron radiation
- High heat load and stress in target (also difficult)

$$\begin{array}{l} e^+e^- \rightarrow \mu^+\mu^- \quad {\rm O(1\mu b)} \\ e^+e^- \rightarrow e^+e^-\gamma \end{array}$$

O(100mb), E_γ≥0.01 E_p

32

Proposed Schedule

G. Gaudio – RBI seminar – 2019, November 28th

The others ingredients

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$\mathrm{BR}(H \to \mu^+ \mu^-)$	Hacker	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b \bar{b}, \ c \bar{c}, \ g g$	$BR(H \to b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

Detector capability to exploit physic potential

$\underline{e^+e^- \to ZH}$

 $\delta\sigma_{HZ}^{
m exp}\sim 0.4\%$

```
full one-loop available, corrections of 5-10%
```

rough estimate: $\delta\sigma_{HZ}^{
m theo} \sim$ 1% from missing two-loop corrections

Two-loop corrections for $2 \rightarrow 2$ can in principle be done ... $\mathcal{O}(\alpha_t \alpha_s)$ corrections: 1.3% [Y. Gong, Z. Li, X. Xu, L. Yang '16]

```
\Rightarrow theory uncertainties sufficiently small \Rightarrow full two-loop for 2 \rightarrow 2 should be done!
```

Availability of large statistics will bring the measurements quickly systematic-limited

HVALA