

Building a new pixel detector for the CMS experiment at the High Luminosity LHC

Devdatta Majumder

The Phase 2 pixel detector

- □ The HL-LHC poses a challenging environment
 - ❖ A factor of 5-7 increase in instantaneous luminosity. Pileup up to 200
 - ~10000 particle tracks per event.
- □ The new pixel detector:
 - Should be radiation tolerant
 - Have higher granularity and low occupancy
 - Larger fiducial volume: better coverage for physics analysis
- □ Todays talk:
 - Mainly covering the electronics system
 - Readout: E-links and the performance of the pixel detector prototype chip.

Inner tracker layout

CMS-TDR-014

□ One-quarter of the CMS pixel detector layout.

The Phase 2 pixel detector

CMS-TDR-014

- □ 1x2 ROCs modules (inner layers)
- □ 2x2 ROCs modules (outer layers)
- □ Total active area of silicon ~4.9 m²
- Hybrid pixel detector: Sensor with bump-bonded readout chips

The detector components

CMS-TDR-014

E-links

- This particular layout is for the inner barrel layer:
 - One pixel module, with two chips each, connected to one lpGBT.
- □ The other layers have seven pixel modules with four chips each, connected to one low power gigabit transceiver (IpGBT).

The RD53A chip

- □ Prototype for ATLAS/ CMS readout chips
 - 400 columns and 192 rows.
 - Designed to withstand HL-LHC radiation doses (500 Mrad) or 2×10¹⁶ n_{eq}

Phase 2 chip: The frontend

- □ Cmd_clk = 160 MHz
- □ Ser_clk = 640 MHz

E-links

- □ E-link: 1 control link (160 Mbs⁻¹), 1-3 data link at 1.28 Gbs⁻¹.
- □ Different prototypes developed:
 - Flat-flex cables
 - Twisted pair cables
- □ Length: 10 cm to 2m

E-link characteristics

Proportion	Labels				
Properties	CFF_L001	CFF_L002	TP_1M_011	TP_2M_111	
Mass/ length	1.2	2 g	0.3 g		
Cross section and materials	0.15 mm Kapton		Cu with 4 twist/inch Cross section 36 AWG (0.127 mm)		
Grounding/ shielding	•	lit up into three e used as grounds ne electronics	Double QML Kapton insulation		
Length	1 m	1 m	1 m	2 m	
Connectors	J	•	SMK		

Several e-link prototypes designed by KU.

Measurement of impedance and performance in signal transmission studied at CERN.

TFPX cable layout study

F1_4	3 uplinks + 1 downlink			
F1_3	2 uplinks + 1 downlink			
	=			
F2_2	_6 1 uplinks + 1 downlink			
	1 uplinks + 1 downlink			
F2_3	2 uplinks + 1 downlink			
	2 uplinks + 1 downlink			
F2_	3_3 2 uplinks + 1 downlink			
	2 uplinks + 1 downlink			

Flavor	# cable/ disk	#cables	length (cm)	Bifurcation	dist. b/w bifurcated ends (cm)	# diff pairs
F1_3	8	256	25	No	-	3
F1_4	10	320	35	No	-	4
F2_2_6	8	256	25	2	6	4
F2_3_6	4	128	25	2	6	3
F2_3_3 7May2019	6	192	35	2	3 D.	3 Maiumder/ IB

Total of 1152 cables in 5 flavors with lengths from 25-35 cm

, Zagreb

Summary of tests on the e-links

11

- Mass measurements, visual Inspection and thermal cycling
- Radiation tolerance (irradiation at Los Alamos)
- Electrical Properties
 - Continuity/DC Resistance
 - Bit Error Rate
 - S-parameter measurements
 - Eye Diagram
 - Time domain reflectometer studies
 - Cross Talk
- □ RD53A studies
 - Eye diagram
 - Transmit and receive data and study with different pre-emphasis

The s-parameters

Scattering matrix quantifying the behaviour of signal in a network.

A two-port network

 a_1 , a_2 , b_1 , b_2 are the measured signal strengths $\sqrt{\text{(power)}}$.

$$S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \qquad \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$S_{11} = b_1/a_1$$

 $a_2 = 0$
 $S_{21} = b_2/a_1$

$$Z = Z_0 \frac{1+S_{11}}{1-S_{11}}$$
, Z_0 = characteristic impedance = 100 Ω

$$S_{12} = b_1/a_2$$
 $a_1 = 0$
 $S_{22} = b_2/a_2$

Measuring S parameters gives the impedance of the DUT (e-link cables).

Set-up for s-parameter tests

13

Shielded cables with SMA connectors.

Differential signal sent from VNA output ports to the VNA input ports through the e-links.

Set-up for s-parameter tests

S-parameters

TP 1M 011

Impedance measurement

- \Box Comparing S₁₁ (reflection) with S₁₂ (transmission) gives the bandwidth of the DUT.
- □ Cross-over point ~500 MHz

- \Box The measured S parameter S₁₁ is converted into a measurement on the impedance of the DUT.
- \square Measured to be 100 Ω .

S-parameters for the round board

- Measured the s-parameters and the impedance of the round board itself.
- Since we interface the cables through the round board, impedance matching here is an important factor.

- fine Impedance in the expected range ~100 Ω .
- Slightly higher than expected. Potential impedance mismatching.

Time domain reflectometer studies

- □ The round board shows higher impedance than expected/ designed.
- □ This may lead to the distortions of the signals and the degradation of the quality of the eye diagram.
- □ Direct measurement of impedances using a time domain reflectometer.

60 Ω Expected 50 Ω (single-ended)

TDR with the cables

1m cable

2m cable

- □ We also measured the impedances of the twisted pair cables (1m and 2m).
- □ Showed higher than expected impedance values.
 - Again, see before from the VNA measurements.

The e-link test set-up

Test set-up with RD53A chip

The eye diagram

Signal amplitude

- The eye diagram is a visual method to evaluate signal integrity.
- □ Th oscilloscope samples the signal at every transition from 0-1 and 1-0 states and overlays all such transitions simultaneously.
- □ The eye area and height tells how many times the signal successfully transitions from the 0 to 1 state and back.
 - Gives an idea about the signal corruption and information loss.

Pre-emphasis

- High frequency signals incur significant losses during transmission.
- Pre-emphasis seeks to mitigate this: apply delay and inversion to the signal and add it back. (reduces signal spread).

The RD53A chip is configured to apply pre-emphasis to the transmitted signal.

Goal: apply pre-emphasis to improve the signal transmission quality.

RD53A pre-emphasis schema

TAP

From Piotr Rymaszewski

24

Reg. Nr.	Name	Nr. Bits	Default value	Bit description
68	SER_SEL_OUT	8	8'b01_01_01_ 01	{SerSelOut3[1:0],SerSelOut2[1:0],SerSelOut1[1:0],SerSelOut0[1:0]} 00-SER_CLK_DIV2, 01-SER_OUT, 10-LFSR7, 11-GND
69	CML_CONFIG	8	8'b00_11_111 1	{SER_INV_TAP[1:0], SER_EN_TAP[1:0], CML_EN_LANE[3:0]}
70	CML_TAPO_BIAS	10	10'd500	Bias current for tap 0 of CML driver (LSB \approx 14.6 μ A, MAX \approx 15mA, same for all tap bias)
71	CML_TAP1_BIAS	10	10'd0	Bias current for tap 1 of CML driver
72	CML_TAP2_BIAS	10	10'd0	Bias current for tap 2 of CML driver

How pre-emphasis works

From RD53A designers

The frequency response of the preemphasis filters de-emphasize the low frequency components and boost the high frequency components of a signal.

Compensates for low-pass effects (high frequency losses of the transmission media).

Helps achieve a flatter frequency response.

Eye diagrams with VNA

- □ Eye diagram simulated from s-parameter measurements.
- □ Tested in the range 10 MHz-5 GHz
- S-parameters measured using PRBS
 - ❖ Length: 2¹¹.
 - * Rate: 1.28 Gbs⁻¹.
- Without pre-emphasis.

Measured eye diagrams

- Here the eye diagrams actually measured using RD53A signal.
 - Pseudorandom bit stream
- □ Direct connections using SMA connectors (no e-links yet).
- Changed video cable since last time-no transitions between clock cycles.
 (Was not really due to PLL locking issue).

Scanning pre-emphasis taps

□ Scan TAP0: 500-1000 in steps of 100

□ Scan TAP1: 0, 1, 2

- Change in eye height with TAPO
- Not much change in width
- Not much change with TAP1

Jitter

- Jitter remains fairly constant with TAPO and TAP1.
- Higher when TAP1 = 1 but probably not significantly high.

Improvements

- The scanning process of the pre-emphasis taps is now more automatic.
- Can make plots scanning all three taps.
- Redoing measurements increasing the ranges of TAP1 and TAP2.
- New e-links have been designed at KU.
- A new interface "blue board" has been designed: Currently in the process of writing firmware for this.

A new e-link interface

- □ Less complicated connections.
- □ Less noise and problems with impedance matching.

Summary and plans

- □ CMS Phase 2 pixel detector development well under way.
- □ At CERN several tests on the pixel detector system being undertaken:
 - Powering tests, chip testing, electronic links, lpGBT.
- Covered the tests related to the electronic readout system.
 - Prototypes of cables developed at University of Kanas
 - Testing being done at KU and CERN.
- □ Plan is to get full testing procedure in place by summer.
- □ Perform tests with new RD53 chip when available
- □ Current tests done without the IpGBT drivers.
 - Need to test using the IpGBT in the readout chain
- □ By the end of the year:
 - Arrive at a baseline choice for the e-link designs.
 - Demonstrate readout chain working with full module, e-links and optoboard.

Contributors: E-link studies

- University of Kansas (KU): Alice Bean, Shayla Bellamy, Sadia Khalil,
 Devdatta Majumder, Robert Young
- CERN: Luis Miguel Casas, Dominik Koukola, Pedro Leitao, Stella Orfanelli,
 Csaba Soos
- □ Rice University: Arun Kumar
- □ University of Zurich: Sebastien Wertz

Backup

Semiconductor properties

35

Properties	Si	Ge	Diamond
Bandgap [eV]	1.12	0.66	5.47
e-h creation energy [eV]	3.6	2.9	13
e mobility [cm ² V ⁻¹ s ⁻¹]	1450	3900	1800
h mobility [cm ² V ⁻¹ s ⁻¹]	450	1900	1200
Radiation length [cm]	9.4	2.3	18.8
Avg. ionization energy loss [MeV cm² g-1]	1.66	1.37	1.75
Avg. Signal [e-h pairs/ μm]	110	260	36
Intrinsic carrier density [cm ⁻³]	1.1 x 10 ¹⁰	2.4x10 ¹³	< 103

- □ Si has less noise than Ge.
- □ SiO₂ surface can be used for gates, protects crystal.
- □ Ge can be fabricated into large crystals.
- Diamond is more radiation hard.

Drift velocity $v_d = \mu E$ CMS pixel operating voltage ~400V. Sensor thickness = 200 μm (layers 2-4 and FPIX) = 75 μm (layer 1)

The e-link test set-up

- □ Fast readout cables from RD53A chip modules to IpGBT module
- □ E-link: 1 control link (160 Mbs⁻¹), 1-3 data link at 1.28 Gbs⁻¹.

Twisted pair cable

Flat-flex cable

