

Dual-Readout Calorimetry

Roberto Ferrari INFN – Sezione di Pavia

Institut Ruđer Bošković November 28th, 2019

dual-readout calorimetry

Need calorimetry:

many different and complex topics

no way to be exhaustive in a single lecture

→ just let me recap few concepts

Calorimeter role

calorimeters

massive detectors for both charged and neutral particles

→ work as well for clusters of particles (i.e. jets)

particles ~ totally "absorbed"

absorption process known as "shower development"

typically divided into:

- a) electromagnetic ("em") calorimeters
- b) hadronic ("had") calorimeters

last but not least, providing:

- a) triggering
- b) particle identification

calorimeters

Missing energy measurements:

 4π (em & had) calorimetry coverage

["hermeticity"]

energy resolution

Normally factorised into 3 uncorrelated terms:

$$\sigma/E = a/\sqrt{E} \oplus b \oplus c/E$$

where:

a → stochastic term

 $b \rightarrow constant term$

(containment, cracks, non-uniformity, non-compensation ...)

 $c \rightarrow electronic noise$

but more accurate breakdowns possible

for example lateral containment better described by a E^{-1/4} term first and second term may have some correlations

resolution relevance?

Few examples (other than missing energy):

invariant mass resolution:

$$H \rightarrow \gamma \gamma$$

→ both energy and spatial (angular) resolution of em calo

H, Z
$$\rightarrow \tau\tau$$
 (followed by $\tau \rightarrow \rho\nu$, $\rho \rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm}\gamma\gamma$)
H, Z, W $\rightarrow jj$

→ both energy and spatial (3D?) resolution(s)

Shower modelling

electromagnetic (em) showers

development driven by em interactions:

- \rightarrow clean & \sim simple
 - → long-range
 - → depend on atomic properties
 - \rightarrow atomic number & atomic scale (~10⁻¹⁰ m)

hadronic (had) showers

development driven by nuclear interactions:

- \rightarrow complex & \sim hard
 - → short-range
 - → depend on nuclear properties
 - \rightarrow density of nuclei & nuclear scale (~10⁻¹⁵ m)

well known for about a century ...

atom → football field (electron clouds anywhere)

nucleus → 1 mm (static) sand grain at field center

 \rightarrow hadrons need to pass within $\sim 10^{-15}$ m from nuclei to interact

→ detectors (dimensions, materials) and performance quite different

em showers

Cascade of $(e^+,e^-,\gamma) \rightarrow$ stochastic process w/ thousands particles

pair production, bremsstrahlung & ionisation

em showers

radiation length $\rightarrow X_0$

X₀: longitudinal development scale

$$-\left\langle \frac{dE}{dx} \right\rangle_{Brems} = \frac{E}{X_0}$$

1 X_0 : when <1-1/e> (~ 63.2%) of electron energy \rightarrow brems.

$$X_0 = \frac{1433A}{Z(Z+1)(11.4 - \ln(Z))} \frac{g}{\text{cm}^2}$$

$$X_0 [g/cm^2] \sim Z^{-1}$$

critical energy $\rightarrow E_c$

E_c: when bremsstrahlung takes over ionisation

$$\frac{dE}{dx}(E_c)\Big|_{Brems} = \frac{dE}{dx}(E_c)\Big|_{Ion}$$

$critical\ energy \rightarrow E_c$

E_c: when bremsstrahlung takes over ionisation

$$\frac{dE}{dx}(E_c)\Big|_{Brems} = \frac{dE}{dx}(E_c)\Big|_{Ion}$$

$$E_c [MeV] \sim Z^{-1}$$

Molière radius $\rightarrow R_{_{M}}$

lateral spread ~ driven by multiple scattering

 $R_{_{M}}$: radius of cylinder containing 90% of shower energy (95% in $2\times R_{_{M}}$)

$$R_{M} = E_{\rm s} \frac{X_0}{E_{\rm c}}$$

where:

$$E_{\rm s} = m_e c^2 \sqrt{4\pi/\alpha} = 21.2 \ {\rm MeV}$$

$$\rightarrow R_{_{\rm M}} [g/cm^2] \sim independent of Z$$

compound materials

$$1/X_0 = \sum w_j/X_j$$

where: w_j = fraction by weight of j_{th} element

same for
$$R_M$$
:
$$\frac{1}{R_M} = \frac{1}{E_s} \sum \frac{w_j E_{cj}}{X_i} = \sum \frac{w_j}{R_{Mi}}$$

em shower development

- 1) fractional energy deposition per X_0
- 2) number of e and photons (E > 1.5 MeV) crossing planes

... one more parameter

shower maximum (shower depth):
where multiplication process ~ stops

$$X=X_0rac{\ln(E_0/E_{
m c})}{\ln 2}$$

$$X \sim 1 / Z$$
, $\sim log(E)$

shower longitudinal dimension mildly grows as log(E)

shower development

longitudinal profiles

lateral profiles

after shower maximum, lateral spread dominated by isotropic processes (Compton scattering, photelectric effect)

scaling violations

longitudinal profiles (10 GeV e⁻)

as well, due to low-energy phenomena (Compton scattering, photoelectric effect) dominating after shower maximum

Detector response

energy response

total shower length L \propto total energy = E signal S (mainly due to low-energy particles) \propto L \propto E \rightarrow linearity

fluctuations:

a 40 GeV shower equivalent to 2 × 20 GeV showers \rightarrow independent fluctuations \rightarrow $\sigma(E) \propto \sqrt{E}$

stochastic term:

$$\sigma(E)/E = a/\sqrt{E}$$
 \rightarrow improves as $E^{-1/2}$

sampling calorimeters

usually sandwich of active (e.g. scintillator plates) and passive elements (e.g. lead plates)

→ impact on resolution ?

sampling fraction: fraction of energy lost in the active medium (by a minimum ionising particle)

sampling fluctuations

(rough) rule of thumb: $a_{\text{samp}} = 2.7\% \sqrt{d/f_{\text{samp}}}$

d [mm] = thickness of each active layer

em resolution?

1) homogeneous: 100% of shower track sampled in active medium

$$\rightarrow$$
 resolution $\sigma/E \sim O(1\%)/\sqrt{E(GeV)}$

2) sampling: only part (<~5%) of track sampled in active medium

$$\rightarrow$$
 resolution $\sigma/E \sim O(10\%)/\sqrt{E(GeV)}$

* "typical" values for high-energy physics

real em calorimeters

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/\mathrm{E}^{1/4}$	1983
$\mathrm{Bi_4Ge_3O_{12}}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_{0}$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_{0}$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	7 1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_{0}$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E}\oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

hadronic calorimetry

 π^0 , η^0 production \rightarrow hadronic showers develop 2 main components:

h component: p, n, π^{\pm} , nuclear fission, ... delayed photons, ...

dimension scale : $\lambda_I \sim 35 \text{ g/cm}^2 \cdot \text{A}^{1/3}$

radiation vs. interaction length

 \rightarrow a factor $> \sim 10$ in λ_I/X_0 ratio

hadronic shower components

- Electromagnetic component
 - electrons, photons
 - neutral pions → 2 γ
- Hadronic (non-em) component
 - charged hadrons π[±],K[±]
 - nuclear fragments, p
 - neutrons, soft γ's
 - break-up of nuclei ("invisible")

many components w/ large fluctuations in relative yield

- 1. large non-gaussian fluctuations in energy sharing em/non-em
- 2. increase of em component with energy
- 3. large, non-gaussian fluctuations in "invisible" energy losses

$electromagnetic\ fraction\ f_{_{em}}$

energy fraction carried by π^0 (mainly) and η^0

 f_{em} , on average, large and energy dependent fluctuations in f_{em} large and non-poissonian

$$\langle f_{em} \rangle = 1 - \left(\frac{E}{E_0} \right)^{(k-1)}$$

 E_0 = average energy to produce a π^0 (k-1) related to average multiplicity

f_{em} fluctuations

$$f = \frac{c - s(C/S)}{(C/S)(1-s) - (1-c)}$$

DREAM: Effect of event selection based on fem

invisible energy

- ◆ In nuclear reactions energy is lost (binding energy) to free protons and neutrons.
- ◆ Can't provide any measurable signal (invisible energy)
- ◆ Accounts on average for about 30-40% of non-em shower energy

large event-by-event fluctuations limit resolution

Correlation between invisible energy and kinetic energy carried by released nucleons

Evaporation nucleons: soft spectrum, mostly neutrons (2-3) MeV)

²³⁸U nuclei (a), and the number of neutrons produced in such reactions (b). From [Wig 87].

invisible energy correlations

Measurement of the kinetic energy of neutrons - correlated to nuclear binding energy loss (invisible energy) - from signal time structure (DREAM)

 f_n anti-correlated to f_{em}

Probing the tot. signal distribution with f_n

no tail in em showers

detector response

Response:

detected signal per unit energy deposit

e.g. number of scintillating (or Cherenkov) p.e. / deposited GeV

Hadronic showers:

em component → response e hadronic component → response h

what about the relative ratio e/h?

compensation

$e/h = 1 \rightarrow compensating calorimeter$

1) increase $h \rightarrow boost\ hadron\ response$ e.g. by adding hydrogen or by using Uranium, both acting as "neutron converters" \rightarrow large integration volume and time

2) decrease e → decrease em sampling fraction (i.e. em performance) → tune active / passive material ratio

compensation pros & cons

- not a guarantee for high resolution
 - ◆ fluctuations in f_{em} are eliminated, but others may be very large.
- has drawbacks
 - high-Z absorber required → small e/mip → non linearity @ low energy
 - → low sampling fraction required → em resolution limited
 - ◆ relies on neutrons \rightarrow integration over large volume and time SPACAL 30%/√E needed \sim 15 tonnes and \sim 50 ns
- high-res em and high-res hadron calorimetry mutually exclusive:

 - • good em resolution ⇒ high sampling fraction (100% crystals, 20% LAr)
 ⇒ large non compensation ⇒ poor jet resolution

most general case

 $e \neq h$

e.g. (right plot): only $1/1.8 \approx 56\%$ of non- π° energy accounted by signal

Note:

e/h ratio: detector characteristic typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters

Nevertheless:

- 1) e/π depends on energy (f_{em} depends on E and shower "age")
- 2) f_{em} different for π , K, p \rightarrow response depends of particle type

scintillation

$$R(e) \neq R(p) \neq R(n) \neq R(\pi) \neq R(\mu) \neq R(jet)$$

- a) invisible energy
- b) different dE/dx
- c) Birks' law

$$rac{dL}{dx} = S rac{rac{dE}{dx}}{1 + k_B rac{dE}{dx}}$$

e/mip ratio

mip: minimum ionising particle \rightarrow only ionisation

```
dE/dx (mip) : lead \sim 12.6 \text{ MeV/cm} \rightarrow 7.15 \text{ MeV/X}_{0}copper \sim 12.7 \text{ MeV/cm} \rightarrow 18.0 \text{ MeV/X}_{0}(\text{PMMA} \sim 2.3 \text{ MeV/cm} \rightarrow 78.2 \text{ MeV/X}_{0})
```

Moreover in high-Z absorbers:

```
Z^5 dependence of photoelectric effect

\rightarrow most soft-\gamma interact in absorber

photoelectrons have very short range

\rightarrow will contribute to signal only close to boundaries
```

→ response to em showers suppressed wrt. mips

e/mip ratio

γ/mip ratio for U (3 mm) / PMMA (2.5 mm) sampling calorimeter

e/mip ratio with Z

calorimeter response to π : $\pi = f_{\rm em} \cdot e + (1 - f_{\rm em}) \cdot h$

$$\rightarrow e/\pi = \frac{e/h}{1 - f_{\rm em} [1 - e/h]}$$

response to π as function of E

low-energy hadrons

finally:

response of (compensating) ZEUS calorimeter to low-energy hadrons

Jets:

high-energy core low-energy hadron tails

fluctuations among them low-energy hadrons ~ mip.s

→ mip response must be considered

real hadronic calorimeters

Experiment	Detector	Absorber material	e/h	Energy resolution (E in GeV)
UA1 C-Modul	Scintillator	Fe	≈ 1.4	80%/√E
ZEUS	Scintillator	Pb	≈ 1.0	34%/√E
WA78	Scintillator	U	0.8	52%/√E ⊕ 2.6%*
D0	liquid Ar	U	1.11	48%/√E ⊕ 5%*
H1	liquid Ar	Pb/Cu	≤ 1.025*	45%/√E ⊕ 1.6%
CMS	Scintillator	Brass (70% Cu / 30% Zn)	≠ 1	100%/√E ⊕ 5%
ATLAS (Barrel)	Scintillator	Fe	≠ 1	50%/√E ⊕ 3%
ATLAS (Endcap)	liquid Ar	Brass	≠ 1	60%/√E ⊕ 3%

^{*} after software compensation

Dual-readout method

Dual-Readout (DR) calorimetry

What?

Don't spoil em resolution to get e/h = 1 (i.e. keep e/h > 1) BUT measure f_{em} event-by-event

 \Longrightarrow correct energy measurements for f_{em} fluctuations

How?

Exploit the fact that (e/h) values for scintillation light (S) and Čerenkov light (Č) production processes are (very) different

Why?

Charged hadrons contribute to S but very marginally to Č

working principles

$$S = E \times [f_{em} + (h/e)_{S} \times (1 - f_{em})]$$

$$\mathbf{C} = \mathbf{E} \times \left[\mathbf{f}_{em} + (\mathbf{h/e})_{\mathbf{C}} \times (1 - \mathbf{f}_{em}) \right]$$

with (h/e)_S and (h/e)_C detector specific constants.

Solving the system, both E and f_{em} can be reconstructed:

$$E = (S - \chi C) / (1 - \chi)$$

where:

$$\chi = (1 - (h/e)_S) / (1 - (h/e)_C)$$

= $(E - S) / (E - C)$

 $\rightarrow \chi$ can be extracted from testbeam data

applying DR approach

Hadronic data points (S, C) located around straight lines

$$E = \frac{S - \chi C}{1 - \chi}$$
is universally valid

$$cotg \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

 θ , χ independent of both:

- i) energy (!)
- ii) type of hadron (!!)

before DR corrections

with DR approach

DREAM/RD52 prototypes

fibre-sampling dual-readout calorimeters

2003 DREAM

Cu: 19 towers, 2 PMT each

2m long, 16.2 cm wide

Sampling fraction: 2%

2012 RD52

Cu, 2 modules

Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$

Fibers: 1024 S + 1024 C, 8 PMT

Sampling fraction: ~4.6%

Depth: $\sim 10 \lambda_{int}$

2012 RD52

Pb, 9 modules

Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$

Fibers: 1024 S + 1024 C, 8 PMT

Sampling fraction: ~5.3%

Depth: $\sim 10 \lambda_{int}$

RD52 dual-readout fibre calorimeters

2 Cu modules

Pb 3*3 matrix

DR at work

Effects of the dual-readout method Signal linearity

particle ID (electron/hadron separation)

Methods to distinguish e/π in longitudinally unsegmented calorimeter

RD52 lead calorimeter

 $(60 \text{ GeV}) \text{ e}^{\text{-}} \text{ vs. } \pi^{\text{-}}$

$$\varepsilon(e^{-}) > 99\%$$

R(π^{-}) ~ 500

NIM A 735 (2014) 120

Starting time PMT signal (ns)

em resolution

Electromagnetic Resolution

~ 1% at 100 GeV

 $\sim 2 \text{ GeV resolution on m}_{_{\rm H}}$ in the $\gamma\gamma$ channel

single-particle hadronic resolution

Hadronic Resolution (Pb Module)

$$rac{\sigma}{E} = rac{53\%}{\sqrt{E}} + 1.7\%$$

to be corrected for:

- light attenuation
- lateral leakage

jet energy resolution ~ few % at ~100 GeV (4th Concept Detector LOI quotes $30\%/\sqrt{E}$ for jets)

Jet resolution may improve coupled w/ tracking information (high granularity → "particle-flow friendly")

Single-fibre readout

$PMT \rightarrow SiPM(single-fibre)$ readout

SiPM +:

- compact readout (no fibres sticking out)
- longitudinal segmentation possible
- operation in magnetic field
- larger light yield (main limitation to Čerenkov signal)
- high readout granularity → particle flow "friendly"
- photon counting (calibration)

SiPM -:

- signal saturation (digital light detector)
- cross talk between Čerenkov and scintillation signals
- dynamic range
- instrumental effects (stability, afterpulsing, ...)

RD52 SiPM module

Brass module, dimensions: ~ 112 cm long, 12 x 12 mm²

$$32 (S) + 32 (\check{C}) \text{ fibres}$$

$$X_0 \sim 29 \text{ mm}$$

$$R_M \sim 31 \text{ mm}$$

$$\sim (0.4 \text{ R}_{\text{M}})^2 \times 39 \text{ X}_0$$

shower cont.
$$\sim 45\%$$

$$f_{sampl} \sim 5-6\%$$

SiPM light sensors

lateral shower profile w/ SiPM

10 / 40 GeV e⁻

$$\theta$$
, $\Phi = 0$ °

em shower are very narrow:

 \sim 10% (\sim 50%) within \sim 1 (\sim 10) mm from shower axis

→ fibre readout can easily provide (powerful) input to PFA

scintillation signal

w/ scintillation light filtering:

Signal linearity results from 2018 TB

attenuation factor ~ 77 (yellow filter)

 $yellow filter \rightarrow increase$ attenuation length

readout granularity (channel grouping)

tune readout granularity by analogically grouping

(i.e. adding) channels

tests done with 1, 2, 4, 6, 9 SiPM.s

It works! May reasonably think at 2×2 , 2×3 , 2×4 , 3×3 ...

G4 full simulations em performance

(IDEA) 4π projective geometry

Copper + scintillating and Cherenkov fibers

IDEA detector layout

(IDEA) 4π projective geometry

75 projective elements x 36 slices

single-fibre readout: 130 M channels

$$\Delta\theta = 1.125^{\circ}$$

Tower size:

$$\Delta\phi=10^\circ$$

em performance: energy resolution

Geant4 40 GeV e⁻

$$\theta = \phi = 1.5^{\circ}$$

resolution & linearity

transverse granularity

transverse granularity

angular resolution

$$\sigma_{\theta} = \frac{1.4\%}{\sqrt{E}} + 0.02 \quad (mrad)$$

$$\sigma_{\phi} = \frac{1.8\%}{\sqrt{E}} + 0.09 \quad \textit{(mrad)}$$

G4 full simulations hadronic performance

had performance

Caveat:

G4 modelling of nuclear interactions still not optimal addressed through different physics lists

X factor estimate not yet reliable

$$E = \frac{S - \chi C}{1 - \chi}$$

resolution and linearity critically depends on it

need valitation → hadronic size prototype

had performance: pion energy resolution

Geant4 100 GeV π (FTFP-BERT physics list)

had performance: pion energy resolution

Promising prel.
results with
FTFP_BERT_TRV
and QBBC new
physics lists

$e^+e^- \rightarrow jj$

independent clustering on the two signals, using the (FASTJET) Durham kt algorithm

jet energy resolution

PYTHIA8 + GEANT4 + FASTJET

$$\frac{\sigma}{E} = \frac{38\%}{\sqrt{E}}$$

2-jet Z/W/H final states

$$e^+e^- \to HZ \to \tilde{\chi}^0 \tilde{\chi}^0 jj$$

$$e^+e^- \rightarrow WW \rightarrow \nu_\mu \mu jj$$

$$e^+e^- \rightarrow HZ \rightarrow bb\nu\nu$$

PYTHIA8 + GEANT4 + FASTJET

2j invariant mass

W	Average (GeV)	std
MC Truth	79.3	4.2
DR method	79.14	5.1

Z	Average (GeV)	std
MC Truth	91.24	4.32
DR method	91.32	5.43

G4 full simulations particle identification

e/π separation

include time information in simulation include scintillation decay time simulate SiPM transfer function

estimate C/S, 95% radius, starting time (ToA)

particle identification: C/S

Electron - pion separation

particle identification: 95% radius

Electron - pion separation

particle identification: SiPM ToA

Electron - pion separation

combined results

G4 full simulations The Ultimate Weapon

deep learning applied to particle id

produced 6 samples of τ-decay final states with time information & SiPM transfer function

convolutional neural network results

- Signals from fibers in each 1.2×1.2 cm² module integrated to obtain 111×111 matrix
- 5 information: signal integral, signal height, peak position, time of crossing threshold, ToT
- Independently for scintillation and Cherenkov signals
- Each event $\rightarrow 111 \times 111 \times 10$ tensor
- Average accuracy ~ 97.3%

Conclusions

Dual-readout fibre-sampling calorimetry is a very promising technology to provide, at the same time:

- e.m. resolution of about $10\%/\sqrt{E}$
- jet energy resolution ~ few % at ~100 GeV
- excellent angular resolution
- high performance in particle identification

R&D ongoing to demonstrate it \rightarrow Geant4 validation is an issue!

Next steps:

build a 10 cm x 10 cm x 1 m prototype divided into 9 towers 16x20 capillary tubes per tower readout of central tower with SiPMs, the others with PMTs

Conclusions

Dual-readout fibre-sampling calorimetry is a very

promising technology t

- e.m. resolution
- jet energy resol
- excellent angula
- high performan

R&D ongoing to demonst

Next steps:

build a 10 cm x 10 cm : 16x20 capillary tubes 1

readout of central tower with SiPMs, the others with PMTs