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dual-readout calorimetry

Need calorimetry:

many different and complex topics

no way to be exhaustive in a single lecture

→ just let me recap few concepts
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Calorimeter role
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calorimeters

massive detectors for both charged and neutral particles
→ work as well for clusters of particles (i.e. jets)

particles ~ totally “absorbed”

absorption process known as “shower development”

typically divided into:
a) electromagnetic (“em”) calorimeters
b) hadronic (“had”) calorimeters

last but not least, providing:
a) triggering
b) particle identification
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calorimeters

Missing energy measurements :

4π (em & had) calorimetry coverageem & had) calorimetry coverage

[ “hermeticity” ]
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energy resolution

Normally factorised into 3 uncorrelated terms :

σ/E = a/√E E = a/E = a/√E √E  ⊕ b ⊕  c/E = a/√E E

where :
a → stochastic term
b → constant term

(em & had) calorimetry coveragecontainment, cracks, non-uniformity,  non-compensation … )
c → electronic noise

but more accurate breakdowns possible
for example lateral containment better described by a E-¼ term
first and second term may have some correlations
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resolution relevance ?

Few examples (em & had) calorimetry coverageother than missing energy) :

invariant mass resolution :

H → γγ

→ both energy and spatial (em & had) calorimetry coverageangular) resolution of em calo

H, Z → ττ (em & had) calorimetry coveragefollowed by τ → ρν, ρ → π±π0 → π±γγ)
H, Z, W → jj

→ both energy and spatial (em & had) calorimetry coverage3D ?) resolution(em & had) calorimetry coverages)
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Shower modelling
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electromagnetic (em) showers

development driven by em interactions :

→ clean & ~ simple

→ long-range

→ depend on atomic properties

→ atomic number & atomic scale  (em & had) calorimetry coverage~10-10 m)
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hadronic (had) showers

development driven by nuclear interactions :

→ complex & ~ hard

→ short-range

→ depend on nuclear properties

→ density of nuclei & nuclear scale (em & had) calorimetry coverage~10-15 m)
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well known for about a century …

atom → football field (em & had) calorimetry coverageelectron clouds anywhere)

nucleus → 1 mm (em & had) calorimetry coveragestatic) sand grain at field center

→ hadrons need to pass within ~10-15m from nuclei to interact

→ detectors (em & had) calorimetry coveragedimensions, materials) and performance
quite different
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em showers

Cascade of (em & had) calorimetry coveragee+,e-,γ) → stochastic process w/E = a/√E  thousands particles

pair production, bremsstrahlung & ionisation
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em showers

electrons emit photons
photons produce e+e- pairs
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Χ
0
 : longitudinal development scale

1 X
0
 : when <1-1/E = a/√E e> (em & had) calorimetry coverage~ 63.2%) of electron energy → brems.

X
0
 [ g/E = a/√E cm2 ] ~ Z-1

radiation length → X
0
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E
c
 : when bremsstrahlung takes 

over ionisation

critical energy → E
c
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E
c
 : when bremsstrahlung takes 

over ionisation

critical energy → E
c

E
c
 [ MeV ] ~ Z-1
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Molière radius → R
M

→ R
M

 [ g/E = a/√E cm2 ] ~ independent of Z

where :

lateral spread ~ driven by multiple scattering

R
M

 : radius of cylinder containing 90% of shower energy (em & had) calorimetry coverage95% in 2×R
M 

)
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compound materials

= fraction by weight of j
th
 element

same for R
M

 :

where :
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1) fractional energy deposition per X
0

2) number of e and  photons (E > 1.5 MeV) crossing planes

em shower development
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shower maximum (em & had) calorimetry coverageshower depth):
where multiplication process ~ stops

X
 
~ 1 /E = a/√E  Z , ~ log(em & had) calorimetry coverageE)

shower longitudinal dimension mildly grows as log(em & had) calorimetry coverageE) 

… one more parameter
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shower development

longitudinal profiles

e in copper

lateral profiles

10 GeV e-

after shower maximum, lateral spread dominated by 
isotropic processes (em & had) calorimetry coverageCompton scattering, photelectric effect)
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scaling violations

longitudinal profiles (em & had) calorimetry coverage10 GeV e-)

as well, due to low-energy phenomena (em & had) calorimetry coverageCompton scattering, 
photoelectric effect) dominating after shower maximum
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Detector response
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energy response

total shower length L ∝ total energy = E
signal S (em & had) calorimetry coveragemainly due to low-energy particles) ∝ L ∝ E

→ linearity

fluctuations :

a 40 GeV shower equivalent to 2 × 20 GeV showers
→ independent fluctuations

→ σ(E) E) ∝ √EE

stochastic term :
σ(E) E)/E =E = a/E =√EE → improves as E-½
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sampling calorimeters

usually sandwich of active (em & had) calorimetry coveragee.g. scintillator plates) and 
passive elements (em & had) calorimetry coveragee.g. lead plates)

→ impact on resolution ?

sampling fraction : fraction of energy lost in the active 
medium (em & had) calorimetry coverageby a minimum ionising particle)
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sampling fluctuations

(em & had) calorimetry coveragerough) rule of thumb :

d [ mm ] = thickness of each active layer
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1) homogeneous: 100% of shower track sampled in active medium

→ resolution σ/E = a/√E E ~ O(em & had) calorimetry coverage1%)/E = a/√E √E(em & had) calorimetry coverageGeV)

2) sampling: only part (em & had) calorimetry coverage<~5%) of track sampled in active medium

→ resolution σ/E = a/√E E ~ O(em & had) calorimetry coverage10%)/E = a/√E √E(em & had) calorimetry coverageGeV)

* “typical” values for high-energy physics

em resolution ?
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real em calorimeters
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π0, η0 production → hadronic showers develop 2 main components:

hadronic calorimetry

h component: p, n, π±, nuclear fission, … delayed photons, … 

dimension scale : λ
I
 ~ 35 g/E = a/√E cm2 · A1/E = a/√E 3
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radiation vs. interaction length

→ a factor > ~10 in λ
I
/E = a/√E X

0
 ratio
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many components w/E = a/√E  large fluctuations in relative yield

   1. large non-gaussian fluctuations in energy sharing em/E = a/√E non-em
   2. increase of em component with energy
   3. large, non-gaussian fluctuations in “invisible” energy losses

hadronic shower components
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energy fraction carried by π0 (mainly) and ηmainly) and η0

< f
em

> vs. pion energy f
em

 for 150 GeV pions

f
em

, on average, large and energy dependent

fluctuations in f
em

 large and non-poissonian

E0 = average energy to produce a π0

(mainly) and ηk-1) related to average multiplicity

electromagnetic fraction f
em
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 f
em

  fluctuations
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✦ In nuclear reactions energy is lost (mainly) and ηbinding energy) to free protons and 

neutrons. 

✦ Can’t provide any measurable signal (mainly) and ηinvisible energy)

✦ Accounts on average for about 30-40% of non-em shower energy 

large event-by-event fluctuations limit resolution

Correlation between invisible 

energy and kinetic energy carried 

by released nucleons

Evaporation nucleons: soft 

spectrum, mostly neutrons (mainly) and η2-3 

MeV) 

invisible energy
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Measurement of the  kinetic energy of neutrons - correlated to nuclear 
binding energy loss (invisible energy) - from signal time structure 
(DREAM)

Probing the tot. signal 
distribution with f

n
f
n
 anti-correlated to femSignal time structure

no tail in em showers

invisible energy correlations
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Response:
detected signal per unit energy deposit

 
e.g. number of scintillating (mainly) and ηor Cherenkov) p.e. / deposited GeV

Hadronic showers:
em component → response e
hadronic component → response h

what about the relative ratio e/h ?

detector response



Institut Ruđer Bošković– Zagreb, 28 November 2019 37

e/h = 1 → compensating calorimeter

1) increase h → boost hadron response
e.g. by adding hydrogen or by using Uranium, both acting as 
“neutron converters” → large integration volume and time

2) decrease e → decrease em sampling fraction (i.e. em 
performance) → tune active / passive material ratio 

compensation



Institut Ruđer Bošković– Zagreb, 28 November 2019 38

✦  not a guarantee for high resolution

✦ fluctuations in fem are eliminated, but others may be very large

✦ has drawbacks

✦ high-Z absorber required → small e/mip → non linearity @ low energy

✦ low sampling fraction required → em resolution limited

✦ relies on neutrons → integration over large volume and time                  
                    SPACAL 30%/√E needed ~15 tonnes and ~50 ns

✦ high-res em and high-res hadron calorimetry mutually exclusive:

✦ good jet energy resolution  compensation                                             ⇒ compensation                                                 
         small sampling fraction (mainly) and η 3%)  poor em resolution⇒ compensation                                             ⇒ compensation                                             ∼3%) ⇒ poor em resolution

✦ good em resolution  high sampling fraction (mainly) and η100% crystals, 20% LAr) ⇒ compensation                                                 
         large non compensation  poor jet resolution⇒ compensation                                             ⇒ compensation                                             

compensation pros & cons
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e ≠ h

e.g. (mainly) and ηright plot): 
only 1/1.8 ≈ 56% of non-πo

energy accounted by signal

Note:
e/h ratio: detector characteristic

typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters

Nevertheless:

1) e/π depends on energy (mainly) and ηf
em

 depends on E and shower “age”)

2) f
em

 different for π,  K, p → response depends of particle type 

most general case
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scintillation

R(mainly) and ηe) ≠ R(mainly) and ηp) ≠ R(mainly) and ηn) ≠ R(mainly) and ηπ) ≠ R(mainly) and ημ) ) ≠ R(mainly) and ηjet)

a) invisible energy

b) different dE/dx

c) Birks’ law
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e/mip ratio

mip : minimum ionising particle → only ionisation

dE/E = a/√E dx (em & had) calorimetry coveragemip) :
lead ~ 12.6 MeV/E = a/√E cm → 7.15 MeV /E = a/√E X

0

copper ~ 12.7 MeV/E = a/√E cm → 18.0 MeV/E = a/√E X
0

(em & had) calorimetry coverage PMMA ~ 2.3 MeV/E = a/√E cm → 78.2 MeV/E = a/√E X
0
 )

Moreover in high-Z absorbers :

Z5 dependence of photoelectric effect 
→ most soft-γ interact in absorber

photoelectrons have very short range
→ will contribute to signal only close to boundaries

→ response to em showers suppressed wrt. mips
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e/mip ratio

γ/E = a/√E mip ratio for 
U (em & had) calorimetry coverage3 mm) /E = a/√E  PMMA (em & had) calorimetry coverage2.5 mm)

sampling calorimeter
e/E = a/√E mip ratio with Z
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e/π ratio

calorimeter response to π :

→ 

response to π as function of E
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low-energy hadrons

finally :

response of (em & had) calorimetry coveragecompensating) ZEUS calorimeter to low-energy hadrons
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jets

Jets:
high-energy core
low-energy hadron tails

fluctuations among them 
low-energy hadrons ~ mip.s

→ mip response must be considered
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* after software compensation 

Energy resolution

real hadronic calorimeters
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Dual-readout method
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What ?

Don’t spoil em resolution to get e/h = 1 (mainly) and ηi.e. keep e/h > 1) BUT 

measure f
em

 event-by-event

         ⟹ correct energy measurements for f
em

 fluctuations

How ?

Exploit the fact that (mainly) and ηe/h) values for scintillation light (mainly) and ηS) and 

Čerenkov light (mainly) and ηČ) production processes are (mainly) and ηvery) different

Why ?

Charged hadrons contribute to S but very marginally to Č

Dual-Readout (DR) calorimetry
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working principles

S = E × [  f
em

 + (em & had) calorimetry coverageh/E = a/√E e)
S
 × (em & had) calorimetry coverage1 – f

em
) ]

C = E × [  f
em

 + (em & had) calorimetry coverageh/E = a/√E e)
C
 × (em & had) calorimetry coverage1 – f

em
) ]

with (em & had) calorimetry coverageh/E = a/√E e)
S
 and (em & had) calorimetry coverageh/E = a/√E e)

C
 detector specific constants.

Solving the system, both E and f
em

 can be reconstructed:

                         E = (em & had) calorimetry coverageS - χ C) /E = a/√E  (em & had) calorimetry coverage1 – χ)

where:

                       χ = (em & had) calorimetry coverage1 – (em & had) calorimetry coverageh/E = a/√E e)
S
)  /E = a/√E  (em & had) calorimetry coverage1 – (em & had) calorimetry coverageh/E = a/√E e)

C
) 

                                = (em & had) calorimetry coverageE – S) /E = a/√E  (em & had) calorimetry coverageE – C)

→ χ can be extracted from testbeam data
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applying DR approach

Hadronic data points (S, C) located around straight lines

θ, χ independent of both:

i) energy (!)

ii) type of hadron (!!)

Č (GeV) vs. S (GeV) C/E vs. S/E
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before DR corrections
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with DR approach
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DREAM/E = a/√E RD52 prototypes
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Texas Tech Uni

INFN Pavia

INFN Pisa

2003
DREAM

2012
RD52

2012
RD52

Cu: 19 towers, 2 PMT each
2m long, 16.2 cm wide
Sampling fraction: 2%

Cu, 2 modules
Each module: 9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~4.6%
Depth: ~10 λint 

Pb, 9 modules
Each module:  9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~5.3%
Depth: ~10 λint

fibre-sampling dual-readout calorimeters
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Pb  3*3 matrix 

2 Cu modules

RD52 dual-readout fibre calorimeters
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DR at work
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particle ID (electron/hadron separation)

NIM A 735 (2014) 120

RD52 lead calorimeter

(em & had) calorimetry coverage60 GeV) e- vs. π-

ε(em & had) calorimetry coveragee-) > 99%
R(em & had) calorimetry coverageπ-) ~ 500



Institut Ruđer Bošković– Zagreb, 28 November 2019 58

em resolution

Copper

Lead
Electromagnetic

Resolution

~ 1% at 100 GeV

Lead
~ 2 GeV resolution on m

H
 in the γγ channel
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single-particle hadronic resolution

to be corrected for:
      - light attenuation
      - lateral leakage

Hadronic Resolution 
(em & had) calorimetry coveragePb Module)
Hadronic Resolution 
(em & had) calorimetry coveragePb Module)
Hadronic Resolution 
(em & had) calorimetry coveragePb Module)

Jet resolution may improve coupled w/ tracking information (high 
granularity → “particle-flow friendly”)

jet energy resolution ~ few % at ~100 GeV

(4th Concept Detector LOI quotes 30%/√E for jets)
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Single-fibre readout
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SiPM + :
  - compact readout (no fibres sticking out)
  - longitudinal segmentation possible
  - operation in magnetic field
  - larger light yield (main limitation to Čerenkov signal)
  - high readout granularity → particle flow “friendly”
  - photon counting (calibration)

 
 

SiPM - :
  - signal saturation (digital light detector)
  - cross talk between Čerenkov and scintillation signals
  - dynamic range
  - instrumental effects (stability, afterpulsing, ...)

PMT → SiPM(single-fibre) readout
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Brass module, dimensions: ~ 112 cm long, 12 x 12 mm2

RD52 SiPM module

32 (S) + 32 (Č) fibres
X

0
 ~ 29 mm

R
M
 ~ 31 mm

 
~ (em & had) calorimetry coverage0.4 R

M
)2 × 39 X

0

shower cont.  ~ 45%
f
sampl 

~ 5-6%

SiPM light sensors
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lateral shower profile w/ SiPM

em shower are very narrow:

~10% (em & had) calorimetry coverage~50%) within ~1 (em & had) calorimetry coverage~10) mm from shower axis
→ fibre readout can easily provide (em & had) calorimetry coveragepowerful) input to PFA

10 /E = a/√E  40 GeV e-

θ, Φ = 0°

TB Data Geant4
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w/E = a/√E  scintillation light filtering:

attenuation factor ~ 77
(em & had) calorimetry coverageyellow filter)

yellow filter → increase 
attenuation length

scintillation signal
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readout granularity (channel grouping)

tune readout granularity by analogically grouping 
(em & had) calorimetry coveragei.e. adding) channels

tests done with 
1, 2, 4, 6, 9 SiPM.s

It works! May reasonably think at 2×2, 2×3, 2×4, 3×3 ... 
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G4 full simulations
em performance
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(IDEA) 4π projective geometry

Copper + scintillating 
and Cherenkov fibers

IDEA detector layout
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75 projective elements x 36 slices

single-fibre readout: 130 M channels

Tower size:

(IDEA) 4π projective geometry
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em performance: energy resolution

Scintillation Cherenkov

Geant4 
40 GeV e-

θ = φ = 1.5°
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Č

S

S + Č

resolution & linearity
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transverse granularity
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transverse granularity
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angular resolution

(mrad)

(mrad)

σ
θ
 vs. E(em & had) calorimetry coveragebeam) σ

φ
 vs. E(em & had) calorimetry coveragebeam)σ(em & had) calorimetry coveragemrad) σ(em & had) calorimetry coveragemrad)



Institut Ruđer Bošković– Zagreb, 28 November 2019 74

G4 full simulations
hadronic performance
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had performance

Caveat:

G4 modelling of nuclear interactions still not optimal

addressed through different physics lists

X factor estimate not yet reliable

resolution and linearity critically depends on it

need valitation → hadronic size prototype
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had performance: pion energy resolution

DR method

Scintillation Cherenkov

Geant4 100 GeV π (FTFP-BERT physics list)
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had performance: pion energy resolution

60 GeV π  
FTFP_BERT

 𝟀=29

Promising prel. 
results with 

FTFP_BERT_TRV 
and QBBC new 

physics lists

60 GeV π  
FTFP_BERT

 𝟀=42

100 GeV π  
FTFP_BERT_TRV

 𝟀=29

100 GeV π
QBBC
 𝟀=29



Institut Ruđer Bošković– Zagreb, 28 November 2019 78

e+e- → jj

Scintillation signal (em & had) calorimetry coveragea.u.) Cherenkov signal (em & had) calorimetry coveragea.u.)

independent clustering
on the two signals,
using the (FASTJET)
Durham kt algorithm
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jet energy resolution

PYTHIA8 + GEANT4 + FASTJET
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2-jet Z/W/H final states

PYTHIA8 + GEANT4 + FASTJET

2j invariant mass

W Average 
(GeV)

std

MC Truth 79.3 4.2

DR method 79.14 5.1

Z Average (GeV) std

MC Truth 91.24 4.32

DR method 91.32 5.43
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G4 full simulations
particle identification
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e/π separation

include time information in simulation
include scintillation decay time
simulate SiPM transfer function
 
estimate C/S, 95% radius, starting time (ToA)
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particle identification: C/S

Electron - pion separation
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particle identification: 95% radius

Electron - pion separation
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particle identification: SiPM ToA

Electron - pion separation
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combined results
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G4 full simulations
The Ultimate Weapon
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deep learning applied to particle id

produced 6 samples of τ-decay final states 
with time information & SiPM transfer 
function
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convolutional neural network results

● Signals from fibers in each 1.2×1.2 cm2 module integrated to obtain 111×111 matrix
● 5 information: signal integral, signal height, peak position, time of crossing 

threshold, ToT
● Independently for scintillation and Cherenkov signals
● Each event → 111×111×10 tensor

● Average accuracy ~ 97.3%



Institut Ruđer Bošković– Zagreb, 28 November 2019 90

Conclusions

Dual-readout fibre-sampling calorimetry is a very 
promising technology to provide, at the same time:

- e.m. resolution of about 10%/E = a/√E √E
- jet energy resolution ~ few % at ~100 GeV
- excellent angular resolution
- high performance in particle identification

R&D ongoing to demonstrate it → Geant4 validation is an issue!

Next steps:
build a 10 cm x10 cm x 1 m prototype divided into 9 towers
16x20 capillary tubes per tower
readout of central tower with SiPMs, the others with PMTs
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